CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>5</td>
</tr>
<tr>
<td>ACFoam® Nail Base Product Information</td>
<td>6</td>
</tr>
<tr>
<td>ACFoam® CrossVent® Product Information</td>
<td>8</td>
</tr>
<tr>
<td>Isometric View - Standard Board Dimensions</td>
<td>10</td>
</tr>
<tr>
<td>Plan View - Standard Board Dimensions</td>
<td>11</td>
</tr>
<tr>
<td>Rake Edge and Eave Nailer Installation</td>
<td>12</td>
</tr>
<tr>
<td>Vapor/Air Retarder Installation</td>
<td>13</td>
</tr>
<tr>
<td>Recessed Edge Detail</td>
<td>14</td>
</tr>
<tr>
<td>Multi-Layer Application</td>
<td>15</td>
</tr>
<tr>
<td>Typical Roof Valley Installation</td>
<td>16</td>
</tr>
<tr>
<td>Typical Roof Hip Installation</td>
<td>17</td>
</tr>
<tr>
<td>Typical Eave Vent</td>
<td>18</td>
</tr>
<tr>
<td>Typical Eave Detail</td>
<td>19</td>
</tr>
<tr>
<td>Typical Ridge Vent</td>
<td>20</td>
</tr>
<tr>
<td>Roof/Wall Vent Detail</td>
<td>21</td>
</tr>
<tr>
<td>Atlas Nail Base Fastener</td>
<td>22</td>
</tr>
<tr>
<td>Fastening Requirements</td>
<td>24</td>
</tr>
<tr>
<td>Standard Fastening Patterns</td>
<td>25</td>
</tr>
<tr>
<td>Techni-Flo® Engineered Ventilation System</td>
<td>28</td>
</tr>
<tr>
<td>Instructions & Warranty Information</td>
<td>30</td>
</tr>
</tbody>
</table>

PUT OUR PRODUCTS TO WORK FOR YOU.
The Cottonwood Canyon Fire Station in Brighton, UT is just one of the innovative buildings across North America that uses Atlas polyiso products.
Atlas Roofing Corporation is an industry leader in polyiso and facer technology. Atlas has invested in its people and technology to enable the highest level of support and customer service across the industry. Because of this commitment, Atlas products come with the peace of mind associated with reliable, consistent engineering, delivered when and where they are needed.

Originating as an asphalt shingle manufacturing company in 1982, today Atlas continues to deliver superior customer service with every job. As Atlas has grown, so has the collective knowledge of its people. Atlas is able to share advancements in building science knowledge in important ways, so your projects are energy efficient, cost effective and profitable.

Focusing on a full line of flat, tapered and nailable composite polyiso roof insulation products, Atlas has eight state of the art manufacturing facilities strategically located throughout North America. Atlas Roofing Corporation proudly supplies ACFoam® polyiso roof insulation as part of roofing systems around the world. So when Atlas says it is Connecting Function with Facility™, it means that you get a partner that helps with all the technical details so your jobs are easier, and run more smoothly, than with any other polyiso manufacturer.
• Thermally efficient closed-cell ACFoam®-II or ACFoam®-III polyisocyanurate (polyiso) insulation board bonded to OSB or CDX plywood on the top face.
• Wood Layer Minimum: 5/16” APA/TECO rated OSB or 19/32” CDX plywood.
• Wood Layer Maximum: 3/4” APA/TECO rated OSB or CDX plywood.
• Polyiso Layer: 1.0” (25.4mm) minimum up to 4.0” (101.6mm) maximum.
• Offered in a variety of composite thicknesses, providing long-term thermal resistance (LTTR) values from 6.3 to 24.2.

• Available as a special order product with FSC® Certified (Requires ACFoam®-III polyiso layer), Fire-Treated, Preservative-Treated and Radiant Barrier OSB or CDX plywood.
• Manufactured using CFC-, HCFC- and HFC-free foam blowing technology with zero ozone depletion potential (ODP) and virtually no (negligible) global warming potential (GWP).
• Approved for use as a non-structural panel in new and re-roofing applications.
• Atlas Nail Base Fasteners are required for all Atlas ACFoam® Nailable Insulation Systems.

CODES AND COMPLIANCES
• ASTM C1289, Type V
• UL Standard 1256 Classification – Construction No. 120, 123 & 458
• UL Standard 790 (ASTM E108) For use with Class A, B or C Shingles, Metal or Tile Roof Coverings
• UL Standard 263 (ASTM E119) Fire Resistance Classification
• FM Standard 4450/4470 Approved (1-90, 1-105) Approved for Class 1 Insulated Roof Deck Construction. Refer to FM Approvals® RoofNav for Specific System Details
• IBC Chapter 26 & NBC Sections on Foam Insulation
• California State Insulation Quality Standards and Title 25 Foam Flammability Criteria (T 1231)
• Miami-Dade County Approved (1/32” CDX Plywood)
• State of Florida Product Approval (FL17989)
• APA/TECO Rated OSB Nailing Surface
• U.S. Voluntary Product Standard PS 2 Compliant
PHYSICAL PROPERTIES
(POLYISO PORTION ONLY)

LTTR (long term thermal resistance) values were determined in accordance with CAN/ULC-S770. Test samples were third-party selected and tested by an accredited material testing laboratory. The LTTR results were reviewed by FM Global and certified by the PIMA Quality Mark Program.

2RSI is the metric expression of R-value (m² • K/W).

To minimize the effects of thermal bridging, Atlas strongly recommends the use of multiple layers when the total desired or specified R-value requires an insulation thickness greater than 2.7" thick.

1Numerical ratings are not intended to reflect performance under actual fire conditions. Flame spread index of ≤ 75 and smoke development ≤ 450 meet code requirements for foam plastic roof insulation. Codes exempt foam plastic insulation when used in FM 4450 or UL 1256. Physical properties listed above are presented as typical average values as determined by accepted ASTM test methods and are subject to normal manufacturing variation.

ACFoam® Nail Base

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>TEST METHOD</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensional Stability</td>
<td>ASTM D2126</td>
<td>< 2%</td>
</tr>
<tr>
<td>Compressive Strength</td>
<td>ASTM D1621</td>
<td>20 psi (140 kPa) or 25 psi (172 kPa)</td>
</tr>
<tr>
<td>Water Absorption</td>
<td>ASTM C209 & D2842</td>
<td>< 1.0% < 3.5%</td>
</tr>
<tr>
<td>Water Vapor Transmission</td>
<td>ASTM E96</td>
<td>< 1.0 perm (57.5mg/(Pa•s•m²))</td>
</tr>
<tr>
<td>Product Density</td>
<td>ASTM D1622</td>
<td>Nominal 2.0 pcf (32.04 kg/m³)</td>
</tr>
<tr>
<td>Flame Spread</td>
<td>ASTM E84 (10 min.)</td>
<td>40–60</td>
</tr>
<tr>
<td>Smoke Development</td>
<td>ASTM E94 (10 min.)</td>
<td>50–170</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>ASTM D1623</td>
<td>> 730 psf (35 kPa)</td>
</tr>
<tr>
<td>Service Temperature</td>
<td>-</td>
<td>-100° to +250°F</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>THERMAL DATA</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>LTTR VALUE</th>
<th>COMPOSITE THICKNESS</th>
<th>²RSI</th>
<th>FLUTE SPANABILITY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IN</td>
<td>MM</td>
<td></td>
</tr>
<tr>
<td>6.3</td>
<td>1.5</td>
<td>38.1</td>
<td>1.10</td>
</tr>
<tr>
<td>9.1</td>
<td>2.0</td>
<td>50.8</td>
<td>1.60</td>
</tr>
<tr>
<td>12.0</td>
<td>2.5</td>
<td>63.5</td>
<td>2.10</td>
</tr>
<tr>
<td>15.0</td>
<td>3.0</td>
<td>76.2</td>
<td>2.63</td>
</tr>
<tr>
<td>18.0</td>
<td>*3.5</td>
<td>88.9</td>
<td>3.16</td>
</tr>
<tr>
<td>21.0</td>
<td>*4.0</td>
<td>101.6</td>
<td>3.70</td>
</tr>
<tr>
<td>24.2</td>
<td>*4.5</td>
<td>114.3</td>
<td>4.25</td>
</tr>
</tbody>
</table>
• Thermally efficient cross ventilated non-structural composite insulation. Consisting of ACFoam®-II or ACFoam®-III polyisocyanurate (polyiso) insulation board and OSB or CDX plywood separated with and bonded to 5 individual Expanded Polystyrene (EPS) vent spacer strips.
• Wood Layer Minimum: 7⁄16” APA/TECO rated OSB or 19⁄32” CDX plywood.
• Wood Layer Maximum: 3⁄4” APA/TECO rated OSB or CDX plywood.
• Vent Strip Layer: 1.0”, 1.5” or 2.0” EPS.
• Polyiso Layer: 1.0” (25.4mm) minimum up to 4.0” (101.6mm) maximum.
• Offered in a variety of composite thicknesses, providing long-term thermal resistance (LTTR) values from 5.7 to 23.6.
• Made to order in 4ft × 8ft (1220mm × 2440mm) composite panels with a nominal thickness of 2.5” to 6.5”.
• Atlas EPS Vent Spacers yield a 6000 psf minimum compressive resistance as well as continuous Atlas Nail Base Fastener support across the 4’ dimension.
• Available as a special order product with FSC® Certified (Requires ACFoam®-III polyiso layer), Fire-Treated, Preservative-Treated and Radiant Barrier OSB or CDX plywood.
• Manufactured using CFC-, HCFC- and HFC-free foam blowing technology with zero ozone depletion potential (ODP) and virtually no (negligible) global warming potential (GWP).
• Approved for use as a non-structural panel in new and re-roofing applications.
• Atlas Nail Base Fasteners are required for all Atlas ACFoam® Nailable Insulation Systems.

CODES AND COMPLIANCES
- ASTM C1289, Type V
- UL Standard 1256 Classification – Construction No. 120, 123 & 458
- UL Standard 790 (ASTM E108) For use with Class A, B or C Shingles, Metal or Tile Roof Coverings
- UL Standard 263 (ASTM E119) Fire Resistance Classification
- FM Standard 4450/4470 Approved (1-90, 1-105) Approved for Class 1 Insulated Roof Deck Construction. Refer to FM Approvals® RoofNav for Specific System Details
- IBC Chapter 26 & NBC Sections on Foam Insulation
- California State Insulation Quality Standards and Title 25 Foam Flammability Criteria (T 1231)
- Miami-Dade County Approved (19⁄32” CDX Plywood)
- State of Florida Product Approval (FL17989)
- APA/TECO Rated OSB Nailing Surface
- FHA min. Property & ARMA Insulated Deck Requirements
LTTR (long term thermal resistance) values were determined in accordance with CAN/ULC-S770. Test samples were third-party selected and tested by an accredited material testing laboratory. To minimize the effects of thermal bridging, Atlas strongly recommends the use of multiple layers when the total desired or specified R-value requires an insulation thickness greater than 2.7" thick.

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>TEST METHOD</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensional Stability</td>
<td>ASTM D2126</td>
<td>< 2%</td>
</tr>
<tr>
<td>Compressive Strength</td>
<td>ASTM D1621</td>
<td>20 psi (140 kPa) or 25 psi (172 kPa)</td>
</tr>
<tr>
<td>Water Absorption</td>
<td>ASTM C209 & D2842</td>
<td>< 1.0% < 3.5%</td>
</tr>
<tr>
<td>Water Vapor Transmission</td>
<td>ASTM E96</td>
<td>< 1.0 perm (57.5 ng/(Pa•s•m²))</td>
</tr>
<tr>
<td>Product Density</td>
<td>ASTM D1622</td>
<td>Nominal 2.0 psf (32.04 kg/m²)</td>
</tr>
<tr>
<td>Flame Spread</td>
<td>ASTM E84 (10 min.)</td>
<td>40–60</td>
</tr>
<tr>
<td>Smoke Development</td>
<td>ASTM E84 (10 min.)</td>
<td>50–170</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>ASTM D1623</td>
<td>> 730 psf (35 kPa)</td>
</tr>
<tr>
<td>Service Temperature</td>
<td></td>
<td>-100° to +250°F</td>
</tr>
</tbody>
</table>

PHYSICAL PROPERTIES
(POLYISO PORTION ONLY)

<table>
<thead>
<tr>
<th>PROPERTY</th>
<th>TEST METHOD</th>
<th>RESULTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensional Stability</td>
<td>ASTM D2126</td>
<td>< 2%</td>
</tr>
<tr>
<td>Compressive Strength</td>
<td>ASTM D1621</td>
<td>20 psi (140 kPa) or 25 psi (172 kPa)</td>
</tr>
<tr>
<td>Water Absorption</td>
<td>ASTM C209 & D2842</td>
<td>< 1.0% < 3.5%</td>
</tr>
<tr>
<td>Water Vapor Transmission</td>
<td>ASTM E96</td>
<td>< 1.0 perm (57.5 ng/(Pa•s•m²))</td>
</tr>
<tr>
<td>Product Density</td>
<td>ASTM D1622</td>
<td>Nominal 2.0 psf (32.04 kg/m²)</td>
</tr>
<tr>
<td>Flame Spread</td>
<td>ASTM E84 (10 min.)</td>
<td>40–60</td>
</tr>
<tr>
<td>Smoke Development</td>
<td>ASTM E84 (10 min.)</td>
<td>50–170</td>
</tr>
<tr>
<td>Tensile Strength</td>
<td>ASTM D1623</td>
<td>> 730 psf (35 kPa)</td>
</tr>
<tr>
<td>Service Temperature</td>
<td></td>
<td>-100° to +250°F</td>
</tr>
</tbody>
</table>

THERMAL DATA

<table>
<thead>
<tr>
<th>COMPOSITE THICKNESS</th>
<th>IN</th>
<th>2.5</th>
<th>3.0</th>
<th>3.5</th>
<th>4.0</th>
<th>4.5</th>
<th>5.0</th>
<th>5.5</th>
<th>6.0</th>
<th>6.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>MM</td>
<td></td>
<td>64</td>
<td>76</td>
<td>89</td>
<td>102</td>
<td>114</td>
<td>127</td>
<td>140</td>
<td>152</td>
<td>165</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AIRSPACE 1.0"</th>
<th>LTTR</th>
<th>5.7</th>
<th>8.6</th>
<th>11.4</th>
<th>14.4</th>
<th>17.4</th>
<th>20.5</th>
<th>23.6</th>
<th>-</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSI</td>
<td>1.00</td>
<td>1.50</td>
<td>2.01</td>
<td>2.53</td>
<td>3.06</td>
<td>3.60</td>
<td>4.15</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AIRSPACE 1.5"</th>
<th>LTTR</th>
<th>-</th>
<th>5.7</th>
<th>8.6</th>
<th>11.4</th>
<th>14.4</th>
<th>17.4</th>
<th>20.5</th>
<th>23.6</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSI</td>
<td>-</td>
<td>1.00</td>
<td>1.50</td>
<td>2.01</td>
<td>2.53</td>
<td>3.06</td>
<td>3.60</td>
<td>4.15</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>AIRSPACE 2.0"</th>
<th>LTTR</th>
<th>-</th>
<th>-</th>
<th>5.7</th>
<th>8.6</th>
<th>11.4</th>
<th>14.4</th>
<th>17.4</th>
<th>20.5</th>
<th>23.6</th>
</tr>
</thead>
<tbody>
<tr>
<td>RSI</td>
<td>-</td>
<td>-</td>
<td>1.00</td>
<td>1.50</td>
<td>2.01</td>
<td>2.53</td>
<td>3.06</td>
<td>3.60</td>
<td>4.15</td>
<td>-</td>
</tr>
</tbody>
</table>

NET FREE AREA PER LINEAR FOOT

<table>
<thead>
<tr>
<th>AIRSPACE DIMENSIONS</th>
<th>1.0"</th>
<th>1.5"</th>
<th>2.0"</th>
</tr>
</thead>
<tbody>
<tr>
<td>NET FREE AREA (NFA/LF)</td>
<td>9.50 sq. inch</td>
<td>14.25 sq. inch</td>
<td>19.00 sq. inch</td>
</tr>
</tbody>
</table>

LTHR (long term thermal resistance) values were determined in accordance with CAN/ULC-S770. Test samples were third-party selected and tested by an accredited material testing laboratory. To minimize the effects of thermal bridging, Atlas strongly recommends the use of multiple layers when the total desired or specified R-value requires an insulation thickness greater than 2.7” thick.

1Numerical ratings are not intended to reflect performance under actual fire conditions. Flame spread index of ≤ 75 and smoke development ≤ 450 meet code requirements for foam plastic roof insulation. Codes exempt foam plastic insulation when used in FM 4450 or UL 1256. Physical properties listed above are presented as typical average values as determined by accepted ASTM test methods and are subject to normal manufacturing variation.

2Thermal resistance of unsealed air space does not apply. Only LTTR of ACFoam® is reported.

3RSI is the metric expression of R-value (m² • K/W).

ACFoam® CrossVent®
ISOMETRIC VIEW

ACFoam® CrossVent®

Nailable Cross Ventilated Roof Insulation

CV-1.0 ISOMETRIC VIEW– STANDARD BOARD DIMENSIONS

MIN. 7/16" APA/TECO RATED OSB OR MIN. 19/32" CDX PLYWOOD ON THE TOP FACE

1.0", 1.5" OR 2.0" STANDARD AIR SPACE

ATLAS ACFOAM®-II OR ACFOAM®-III RIGID POLYISO INSULATION BOARD

ACFoam® Nail Base

Nailable Roof Insulation

NB-1.0 ISOMETRIC VIEW– STANDARD BOARD DIMENSIONS

MIN. 7/16" APA/TECO RATED OSB OR MIN. 19/32" CDX PLYWOOD ON THE TOP FACE

ATLAS ACFOAM®-II OR ACFOAM®-III RIGID POLYISO INSULATION BOARD

SCALE: NTS
ACFoam® CrossVent®

Nailable Cross Ventilated Roof Insulation

CV-1.1 PLAN VIEW – STANDARD BOARD DIMENSIONS

1/8” MINIMUM RECESS OF OSB FROM ISO/EPS EDGE ON TWO ADJACENT SIDES OF PANEL

4.0” WIDE ATLAS EPS VENT SPACERS (24” O.C. TYPICAL)

ACFoam® Nail Base

Nailable Roof Insulation

NB-1.1 PLAN VIEW – STANDARD BOARD DIMENSIONS

1/8” MINIMUM RECESS OF OSB FROM ISO EDGE ON TWO ADJACENT SIDES OF PANEL
NOTES:

1. Insulation shall be trimmed from rake edge and eave to accommodate rake and eave nailers. OSB shall be supported on rake edge by nailer and on eave by wood spacers to allow for air flow at eave.

2. To minimize the effects of thermal bridging, Atlas strongly recommends the use of multiple layers when the total desired or specified R-value requires an insulation thickness greater than 2.7” thick.
NOTES:

1. Atlas recommends that the designer consider carefully the need for a vapor/air retarder in order to limit moisture/airflow into the roof system. Determining the need for and location of the vapor/air retarder remains solely the responsibility of the architect, engineer or design professional.

2. A suitable vapor retarder shall have a minimum permeance rating of 0.5 or less as determined by ASTM E96.

3. Follow vapor/air retarder manufacturer’s installation instructions for seaming and perimeter edge terminations.

4. A two-layer insulation application significantly reduces moisture/airflow into the roof system.

5. To minimize the effects of thermal bridging, Atlas strongly recommends the use of multiple layers when the total desired or specified R-value requires an insulation thickness greater than 2.7” thick.
NOTES:

1. ACFoam® CrossVent® shall be installed over an approved roof deck with the 8 ft. dimension parallel to the eave.

2. To minimize the effects of thermal bridging, Atlas strongly recommends the use of multiple layers when the total desired or specified R-value requires an insulation thickness greater than 2.7” thick.

NOTES:

1. ACFoam® Nail Base shall be installed over an approved roof deck with the 8 ft. Dimension parallel to the eave.

2. To minimize the effects of thermal bridging, Atlas strongly recommends the use of multiple layers when the total desired or specified R-value requires an insulation thickness greater than 2.7” thick.
NOTES:

1. 2”-0” Staggered installation of nailable insulation over an optional layer of Atlas ACFoam®-II or Atlas ACFoam®-III rigid polyiso insulation board.

2. To minimize the effects of thermal bridging, Atlas strongly recommends the use of multiple layers when the total desired or specified R-value requires an insulation thickness greater than 2.7” thick.
NOTES:

Install 4" × 6" Atlas vent spacers on both sides of valley center line as shown for OSB support. Fasten through each spacer strip into structural deck using Atlas Nail Base Fasteners. Atlas vent spacers can be cut from unused ACFoam® CrossVent® spacer strips or obtained through an Atlas sales office.
Install 4” x 6” Atlas vent spacers on both sides of hip center line as shown for OSB support. Fasten through each spacer strip into structural deck using Atlas Nail Base Fasteners. Atlas vent spacers can be cut from unused AC Foam® CrossVent® spacer strips or obtained through an Atlas sales office.
NOTES:

1. Refer to fastening requirements on page 24 for approved deck types.

2. Fastener penetration minimums:
 - Wood Plank: 1" penetration into deck;
 - Plywood: 1/8" through deck;
 - Metal: 3/8" through deck (upper flange only);
 - Structural Concrete (2500 psi min.): 1" Penetration into deck.

3. Atlas recommends that the designer consider carefully the need for a vapor/air retarder in order to limit moisture/air flow into the system. Determining the need for and location of the vapor/air retarder remains solely the responsibility of the architect, engineer or design professional.

4. For tile, slate or other heavy roof covering, thicker OSB, such as 3/4", may be required. Consult roof covering manufacturer or design professional.

5. The net free area of the vented eave fascia should meet or exceed the air space dimension of the ACFoam® CrossVent®.

6. The net free area for the ridge vent should meet but not exceed the net free area of the air space in the ACFoam® CrossVent®.

7. To minimize the effects of thermal bridging, Atlas strongly recommends the use of multiple layers when the total desired or specified R-value requires an insulation thickness greater than 2.7" thick.

8. Techni-Flo® EV is not intended for attachment to open ended metal truss or metal bar joist applications.
NOTES:

1. Refer to fastening requirements on page 24 for approved deck types.

2. Fastener penetration minimums:
 - **Wood Plank**: 1" penetration into deck;
 - **Plywood**: ½" through deck;
 - **Metal**: ¾" through deck (upper flange only);
 - **Structural Concrete (2500 psi min.)**:
 - 1" penetration into deck.

3. Atlas recommends that the designer consider carefully the need for a vapor/air retarder in order to limit moisture/air flow into the system. Determining the need for and location of the vapor/air retarder remains solely the responsibility of the architect, engineer or design professional.

4. For tile, slate or other heavy roof covering, thicker OSB, such as ¾", may be required. Consult roof covering manufacturer or design professional.

5. To minimize the effects of thermal bridging, Atlas strongly recommends the use of multiple layers when the total desired or specified R-value requires an insulation thickness greater than 2.7" thick.
NOTES:

1. Refer to fastening requirements on page 24 for approved deck types.

2. Fastener penetration minimums:
 - **Wood Plank**: 1” penetration into deck;
 - **Plywood**: ½” through deck;
 - **Metal**: ¾” through deck (upper flange only);
 - **Structural Concrete** (2500 psi min.):
 1” penetration into deck.

3. Atlas recommends that the designer consider carefully the need for a vapor/air retarder in order to limit moisture/air flow into the system. Determining the need for and location of the vapor/air retarder remains solely the responsibility of the architect, engineer or design professional.

4. For tile, slate or other heavy roof covering, thicker OSB, such as ¾”, may be required. Consult roof covering manufacturer or design professional.

5. To calculate the appropriate ridge vent gap opening: Divide the total eave (intake) linear footage by the total ridge (exhaust) linear footage and multiply that number by the air space dimension in ACFoam® CrossVent® (round down to the nearest ¼”).

6. To minimize the effects of thermal bridging, Atlas strongly recommends the use of multiple layers when the total desired or specified R-value requires an insulation thickness greater than 2.7” thick.
NOTES:

1. Refer to fastening requirements on page 24 for approved deck types.

2. Fastener penetration minimums:
 - Wood Plank: 1” penetration into deck;
 - Plywood: 1/2” through deck;
 - Metal: 3/4” through deck (upper flange only);
 - Structural Concrete (2500 psi min.): 1” penetration into deck.

3. Atlas recommends that the designer consider carefully the need for a vapor/air retarder in order to limit moisture/air flow into the system. Determining the need for and location of the vapor air retarder remains solely the responsibility of the architect, engineer or design professional.

4. For tile, slate or other heavy roof covering, thicker OSB, such as 3/4”, may be required. Consult roof covering manufacturer or design professional.

5. To calculate the appropriate roof to wall vent opening: Divide the total eave (intake) linear footage by the total roof to wall (exhaust) linear footage and multiply that number by the air space dimension in CrossVent® (round down to the nearest 1/4”).

6. Atlas strongly recommends the use of multiple layers when the total desired or specified R-value requires an insulation thickness greater than 2.7” thick.
DESCRIPTION: Standard or Light Duty insulation fastener with #2 Light Duty Drill Point. Specially engineered for attaching Atlas ACFoam® Nail Base and ACFoam® CrossVent® to corrugated steel and wood deck substrates. Atlas Nail Base Fasteners are required for proper mechanical attachment of all ACFoam® nailable insulation systems.

Material: Case Hardened Tempered Carbon Steel
Head Style/Drive: Pancake Head with T-30 Internal Drive
Head Diameter: 0.635”
Shank Diameter: 0.190”
Thread Length: 2.750”
Overall Length: 3” thru 18”
Point: #2 (0.135” dia.) Drill Point
Coating: Epoxy E-Coat (black)
Passes more than 15 cycles (Kesternich) in accordance with DIN 50018

PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th>TENSILE STRENGTH</th>
<th>SHEAR STRENGTH</th>
<th>HEAD PULL-THRU VALUE¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,380 lbf.</td>
<td>2,900 lbf</td>
<td>545 lbf</td>
</tr>
</tbody>
</table>

LATERAL LOAD RESISTANCE¹

<table>
<thead>
<tr>
<th>MAIN MEMBER</th>
<th>SIDE MEMBER</th>
<th>LOAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>22 Ga. Corrugated</td>
<td>Nail Base</td>
<td>411 lbf</td>
</tr>
<tr>
<td>¼” OSB</td>
<td>Nail Base</td>
<td>112 lbf</td>
</tr>
</tbody>
</table>

WITHDRAWAL VALUES IN STEEL¹ (80 KSI MIN.)

<table>
<thead>
<tr>
<th>Type B Corrugated</th>
<th>22 Ga.</th>
<th>20 Ga.</th>
<th>18 Ga.</th>
</tr>
</thead>
<tbody>
<tr>
<td>lbf</td>
<td>510</td>
<td>645</td>
<td>920</td>
</tr>
</tbody>
</table>

WITHDRAWAL VALUES IN WOOD¹

<table>
<thead>
<tr>
<th>Specific Gravity</th>
<th>0.67</th>
<th>0.55</th>
<th>0.5</th>
<th>0.46</th>
<th>0.43</th>
<th>0.36</th>
<th>0.31</th>
</tr>
</thead>
<tbody>
<tr>
<td>lb/in.</td>
<td>1429</td>
<td>1173</td>
<td>1067</td>
<td>981</td>
<td>917</td>
<td>768</td>
<td>661</td>
</tr>
</tbody>
</table>

¹Head-Pull-Thru, “Withdrawal”, and “Lateral Load” data reflect average ultimate values.

NOTE: All tests were conducted by an independent testing laboratory. Test results are offered only as a guide and are not guaranteed in any way by Atlas Roofing Corporation.
Atlas Nail Base Fastener HD

Heavy Duty Nailable Insulation Fastener

DESCRIPTION: Heavy Duty Nailable Insulation Fastener with #4 Heavy Duty Drill Point. Specially engineered for attaching Atlas ACFoam® Nail Base and ACFoam® CrossVent® to thick steel substrates. Atlas Nail Base Fasteners are required for proper mechanical attachment of all ACFoam® Nailable Insulation Systems.

- **Material:** Case hardened and Tempered Carbon Steel
- **Head Style/Drive:** Pancake Head with T-30 Internal Drive
- **Head Diameter:** 0.625”
- **Shank Diameter:** 0.212”
- **Thread Length:** 3.875”
- **Overall Length:** 6” thru 13.75”
- **Point:** #4 (0.225” dia.) Heavy Duty Drill Point
- **Coating:** Epoxy E-Coat (black)

Passes more than 15 cycles (Kesternich) in accordance with DIN 50018

PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th>TENSILE STRENGTH</th>
<th>SHEAR STRENGTH</th>
<th>HEAD PULL-THRU VALUE¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>6,000 lbf.</td>
<td>3,400 lbf</td>
<td>545 lbf</td>
</tr>
</tbody>
</table>

¹“Head-Pull-Thru” and “Withdrawal” data reflect average ultimate values.

NOTE: All tests were conducted by an independent testing laboratory. Test results are offered only as a guide and are not guaranteed in any way by Atlas Roofing Corporation.

WITHDRAWAL VALUES IN STEEL¹

<table>
<thead>
<tr>
<th>Structural Steel</th>
<th>16 Ga.</th>
<th>13 Ga.</th>
<th>12 Ga.</th>
<th>3/8”</th>
<th>1/4”</th>
</tr>
</thead>
<tbody>
<tr>
<td>lbf</td>
<td>770</td>
<td>1130</td>
<td>1690</td>
<td>3100</td>
<td>4500</td>
</tr>
</tbody>
</table>

Atlas Nail Base Fastener TP

Thread Point Nailable Insulation Fastener

DESCRIPTION: Thread Point Nailable Insulation Fastener with Gimlet Thread Point. Specially engineered fastener for attaching Atlas ACFoam® Nail Base and ACFoam® CrossVent® to wood and timber substrates. Atlas Nail Base Fasteners are required for proper mechanical attachment of all ACFoam® Nailable Insulation Systems.

- **Material:** Case hardened and Tempered Carbon Steel
- **Head Style/Drive:** Pancake Head with T-30 Internal Drive
- **Head Diameter:** 0.625”
- **Shank Diameter:** 0.190”
- **Thread Length:** 2.750”
- **Overall Length:** 2” thru 18”
- **Point:** Gimlet Thread
- **Coating:** Epoxy E-Coat (black)

Passes more than 15 cycles (Kesternich) in accordance with DIN 50018

PHYSICAL PROPERTIES

<table>
<thead>
<tr>
<th>TENSILE STRENGTH</th>
<th>SHEAR STRENGTH</th>
<th>HEAD PULL-THRU VALUE¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>3,380 lbf.</td>
<td>2,900 lbf</td>
<td>545 lbf</td>
</tr>
</tbody>
</table>

¹“Head-Pull-Thru” and “Withdrawal” data reflect average ultimate values.

NOTE: All tests were conducted by an independent testing laboratory. Test results are offered only as a guide and are not guaranteed in any way by Atlas Roofing Corporation.

WITHDRAWAL VALUES IN WOOD¹

<table>
<thead>
<tr>
<th>Structural Steel</th>
<th>0.67</th>
<th>0.55</th>
<th>0.50</th>
<th>0.46</th>
<th>0.43</th>
<th>0.36</th>
<th>0.31</th>
</tr>
</thead>
<tbody>
<tr>
<td>lbf</td>
<td>1429</td>
<td>1173</td>
<td>1067</td>
<td>981</td>
<td>917</td>
<td>768</td>
<td>661</td>
</tr>
</tbody>
</table>

23
Table 1 - Required Number of Atlas Nail Base Fasteners

<table>
<thead>
<tr>
<th>Roof Slopes</th>
<th>Roof Area</th>
<th>3:12/6:12</th>
<th>7:12/12:12</th>
<th>14:12/24:12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Snowload</td>
<td>10-30</td>
<td>40 50 60 70 80 90</td>
<td>10-30 40 50 60 70 80 90</td>
<td>10-30 40 50 60 70 80 90</td>
</tr>
<tr>
<td>18-22 ga. steel</td>
<td>Field</td>
<td>15 15 15 15 15 15</td>
<td>15 20 20 20 25 25</td>
<td>20 25 30 30 35 35 40</td>
</tr>
<tr>
<td>1" wood or structural concrete</td>
<td>Field</td>
<td>15 15 15 15 15 15</td>
<td>15 20 20 20 25 25</td>
<td>15 20 25 25 30 30 35</td>
</tr>
<tr>
<td>19⁄32" plywood minimum</td>
<td>Field</td>
<td>15 15 15 20 20 25 25</td>
<td>15 25 25 30 35 40</td>
<td>20 30 35 40 45 45 50</td>
</tr>
</tbody>
</table>

Table 1 - Notes
- Table 1 applies to roofs in areas of wind velocity not exceeding 110 mph, Exposure C, Importance Factor I = 1.15, and a maximum mean roof height of 60ft. For overhangs, consult Atlas technical department.
- Table 1 is valid only for use with Atlas Nail Base Fasteners.
- Refer to pages 25–27 for appropriate fastening patterns.
- When plywood is used as the top surface of the ACFoam® nailable insulations, additional fastening is required. See Atlas Technical Bulletin: TB-1.
- Roof perimeter area is defined as a band equal in width to 10% of the lesser roof plan dimension or 40% of the mean roof height, whichever is less (Min. band width is 4ft.) Note: Perimeter area also includes corners.

Table 2 - Required Number of Atlas Nail Base Fasteners

<table>
<thead>
<tr>
<th>Roof Slopes</th>
<th>Roof Area</th>
<th>3/12</th>
<th>4/12</th>
<th>5/12</th>
<th>6/12</th>
<th>7/12</th>
<th>8/12</th>
<th>9/12</th>
<th>10/12</th>
<th>11/12</th>
<th>12/12</th>
<th>13/12</th>
<th>14/12</th>
<th>15/12</th>
<th>16/12</th>
<th>17/12</th>
<th>18/12</th>
<th>20/12</th>
<th>22/12</th>
<th>24/12</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Perimeter</td>
<td>45 45 45 45 35 35</td>
<td>35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35 35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Perimeter</td>
<td>40 40 40 40 40 40</td>
<td>30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30 30</td>
<td></td>
</tr>
</tbody>
</table>

Table 2 - Notes
- Table 2 applies to roofs with no snowload and wind velocity over 110 mph, but not exceeding 146mph, in combination with 10psf Dead Load, Exposure C, Importance Factor I = 1.15, and a maximum mean roof height of 60ft. For overhangs, consult Atlas technical department.
- Table 2 is valid only for use with Atlas Nail Base Fasteners.
- Refer to pages 25–27 for appropriate fastening patterns.
- When plywood is used as the top surface of the ACFoam® nailable insulations, additional fastening is required. See Atlas Technical Bulletin: TB-1.
- Roof perimeter area is defined as a band equal in width to 10% of the lesser roof plan dimension or 40% of the mean roof height, whichever is less (Min. band width is 4ft.) Note: Perimeter area also includes corners.

Approved Decks
- 18-22 ga. Steel Deck (¾" through deck (top flange)).
- Structural Concrete (2500 psi min.) ½" pre-drilled pilot hole required (1” penetration into deck).
- 1” minimum wood plank and T&G (1” penetration into deck).
- 19⁄32” minimum plywood (½” through deck).
- FM 1-60, 1-90, 1-105:15 Fasteners (min.) for CrossVent®, and Nail Base Insulation (Steel Deck and Structural Concrete).
- For projects requiring FM wind rating, FM approved assembly, including deck and roof covering, is required.

ATLAS NAIL BASE FASTENER INSTALLATION RECOMMENDATIONS:
- The fasteners should be installed using an 1800–2500 RPM(max) screw gun with a hardened drive bit.
- Standard electric drill guns are not recommended for installation of Atlas Nail Base Fasteners.
- Metal decks are acceptable deck types provided they are between 18 ga.(max) and 22 ga.(min.). Be sure to determine the gauge of the deck. For 16 ga. or heavier, consult the Atlas Technical Department.
NOTES:

1. Minimum thickness of the ACFoam® CrossVent® shall be 2.5" to meet FM 1-60, 1-90 or 1-105 requirements.

2. Minimum thickness of the ACFoam® Nail Base Insulation shall be 1.5" to meet FM 1-60, 1-90 or 1-105 requirements.

3. Atlas Nail Base Fasteners required as part of Atlas ACFoam® nailable insulation systems.
NOTES:

1. Minimum thickness of the ACFoam® CrossVent® shall be 2.5" to meet FM 1-60, 1-90 or 1-105 requirements.

2. Minimum thickness of the ACFoam® Nail Base Insulation shall be 1.5" to meet FM 1-60, 1-90 or 1-105 requirements.

3. Atlas Nail Base Fasteners required as part of Atlas ACFoam® nailable insulation systems.
NOTES:

1. Minimum thickness of the ACFoam® CrossVent® shall be 2.5" to meet FM 1-60, 1-90 or 1-105 requirements.

2. Minimum thickness of the ACFoam® Nail Base Insulation shall be 1.5" to meet FM 1-60, 1-90 or 1-105 requirements.

3. Atlas Nail Base Fasteners required as part of Atlas ACFoam® nailable insulation systems.
Techni-Flo® EV (eave vent) features a unique design that promotes positive air intake at the eave, limiting heat build-up, helping to evacuate moisture, thereby ensuring a longer roof system life. Pre-slotted fastening holes on the roof flange and cover allow for thermal movement, as well as ensure proper fastening location.

The Techni-Flo® EV is just one part of the Techni-Flo® Engineered Ventilation System. When combined with the Techni-Flo® RV and ACFoam® CrossVent® Nailable Polyiso insulation, it creates a state-of-the-art ventilation system, specifically designed to create consistent air intake and exhaust under the roof covering, all based on the design conditions of the project. Properly designed and engineered ventilation through the roof system is essential for roof system durability in both commercial and residential steeped-sloped roofing systems.

FEATURES & BENEFITS

PRODUCT VERSATILITY
- Engineered and fabricated to individual job requirements.
- Custom colors available.
- Available in .40”, .50” and .63” aluminum, 24 ga. steel and alternative materials, such as cedar exterior laminates.

COST SAVING BENEFITS
- Eliminates the need for overhangs and vented soffits, reducing extra labor costs.
- Pre-slotted fastening holes on roof flange and cover allow for thermal movement and ensure proper fastening location.
- Provided in 12’ lengths for faster installation and fewer splice joints.

COMPREHENSIVE WARRANTY*
- Ridge and eave vents will withstand winds up to 130mph¹.
- Vents will be manufactured free of any defects.
- Finish will not fade or crack. Covers repair or replacement of the ridge and eave for 20 years.
- Vents will continue to provide designed ventilation for the duration of the warranty*.

*See the warranty for terms and conditions. Techni-Flo® EV is not intended for attachment to open ended metal truss or metal bar joist applications.

¹Design enhancements required for 130 mph wind speed coverage include, but are not limited to, a minimum .060” aluminum or .063” aluminum cover.
Techni-Flo® RV (ridge vent) accommodates both standing seam and shingled roof applications, and is engineered to individual job requirements. Featuring a snap on cover for ease of installation, this all-metal ridge vent can withstand heavy snow-loads, and will not compress under stress. It also features slotted fastening holes for proper thermal movement and correct fastener placement.

The Techni-Flo® RV is just one part of the Techni-Flo® Engineered Ventilation system. When combined with the Techni-Flo® EV and ACFoam® CrossVent® Nailable Polyiso insulation, it creates a state-of-the-art ventilation system specifically designed to create consistent air intake and exhaust under the roof covering. Properly designed and engineered ventilation through the roof system is essential for roof system durability in both commercial and residential steeped-sloped roofing systems.

FEATURES & BENEFITS

SIZING AND MATERIALS
- Engineered and fabricated to individual job requirements.
- Cover is available in .40”, .50”, and .63” aluminum and 24 ga. steel.
- Accommodates both standing seam and shingled roofs.
- Custom colors available.

EFFICIENT DESIGN
- Easy snap-on cover.
- All metal construction withstands heavy snow loads; will not compress under stress.
- Available in an alternative Field Roofed Version for shingle attachment.
- Slotted fastening holes for proper thermal movement and correct fastener placement and spacing.
- Manufactured in 12’ lengths — fewer splice joints.
- Passed wind-driven rain test.

COMPREHENSIVE WARRANTY
- Ridge and eave vents will withstand winds up to 130mph
- Vents will be manufactured free of any defects
- Finish will not fade or crack. Covers repair or replacement of the ridge and eave for 20 years
- Vents will continue to provide designed ventilation for the duration of the warranty

*See the warranty for terms and conditions.

1 Design enhancements required for 130 mph wind speed coverage include, but are not limited to, a minimum .050” aluminum or .063” aluminum cover.
GENERAL INSTRUCTIONS & WARRANTY INFORMATION FOR ACFOAM® PRODUCTS

STORAGE
Factory applied packaging is intended only for protection during transit. When stored outdoors or on the job site, the insulation should be stacked on pallets at least three inches above ground level and completely covered with a weatherproof covering such as a tarpaulin. The temporary factory-applied packaging should be slit or removed to prevent accumulation of condensation. Roof insulation which has become wet or damaged should be removed and replaced with solid, dry insulation, of the same type.

INSTALLATION
Before installation begins, the roof deck should be firm, well attached, even, clean and dry. Proper attachment of the insulation is necessary to prevent roof failures. Atlas is not responsible for any damage caused by improper attachment. ACFOAM® products can be attached to decks that are approved by FM Approvals and local codes. Atlas is not responsible for determining the suitability of the deck. ACFOAM® products shall be kept dry before, during and after installation. Install only as much ACFOAM® product as can be covered the same day with completed roofing. Although ACFOAM® products have been designed to withstand normal foot traffic, protection from damage by construction traffic and/or abuse is extremely important. Roof surface protection such as plywood shall be used in areas where storage and staging are planned and heavy or repeated traffic is anticipated during or after installation. Refer to Atlas Technical Bulletin TB-5.

MULTI-LAYER INSTALLATION
A two-layer application of ACFOAM® products is strongly recommended. The joints in each layer should be offset in order to avoid a vertically continuous joint through the total insulation thickness. Two layers (or more) with joints staggered can provide improved insulation performance by eliminating thermal bridges. This method also reduces condensation potential and thermal stress on the roof membrane. Refer to Atlas Technical Bulletin TB-5.

MECHANICAL ATTACHMENT
Mechanical fastening is the recommended method of attachment over nailable decks. Fastener frequency and spacing for steel, wood, cast-in-place structural concrete and poured gypsum decks are covered in the current Atlas Catalog according to the membrane system. Refer to the current FM Loss Prevention Data Sheet 1-29 for special considerations regarding perimeter and corners of the roof. Go to AtlasRoofing.com for typical fastening patterns for field area of the roof. For further recommendations regarding attachment of insulation to lightweight insulating concrete decks or poured gypsum concrete decks, follow the instructions outlined in the current NRCA Roofing Manual. ACFOAM® products shall not be adhered directly to these decks by any bitumen or adhesive attachment method.

ADHESIVE ATTACHMENT
For installing ACFOAM® products to a structural concrete deck, adhesive/bitumen attachment is the recommended method. When using hot bitumen on concrete decks, priming is necessary. Precautions must be taken to ensure that concrete decks have fully hydrated and do not continue to release moisture. Insulation must remain dry before, during, and after installation. Precautions must also be taken to prevent bitumen dripage. When using hot-applied bitumen for attachment of insulation to structural concrete decks and successive insulation layers, the temperature of the bitumen shall be approximately 50°F below the interply hand mopping EVT. The deck shall be dry and care must be taken to apply the bitumen in sufficient quantity to totally cover the available deck surface when applied at the correct temperature (390°F). To ensure embedment, the board shall also be “stepped in” at several points while the bitumen is still hot enough to allow positive attachment. The recommended size of ACFOAM® product for hot bitumen attachment is 4’ x 4’. When using polyurethane adhesives or cold applied asphalt adhesive, follow the adhesive manufacturer's installation recommendations.

ADHESIVE ATTACHMENT

VAPOR/AIR RETARDERS
Moisture vapor tends to migrate from warmer to cooler areas. In building construction, vapor/air retarders are used to inhibit or block the passage of warm, moisture laden air into walls or roofing assemblies. To determine whether a vapor/air retarder is necessary, calculations based on interior relative humidity, interior temperature, and outside design temperature must be performed. Consult the NRCA Roofing Manual: Membrane Roofing Systems for more information regarding vapor/air retarders and dew point calculations. Special consideration should be given to construction generated moisture as well. For example, construction-generated moisture will be released when concrete floor slabs are placed after the roof has been installed, which can drive large quantities of moisture into the roof system. Therefore, Atlas is not responsible for damage to the insulation when exposed to construction-generated moisture or from moisture released from building materials. Refer to the NRCA Roofing Manual: Membrane Roofing Systems for recommendations for the use of a vapor retarder when construction-generated moisture is present. Consult vapor/air retarder manufacturer for recommended applications and details.

WARNING-DO NOT LEAVE EXPOSED
This product is a polyiso organic plastic foam and will burn if exposed to an ignition source of sufficient heat and intensity, or open flame, such as a welder's torch. Like other organic materials, this product will release smoke if ignited. Do not apply flame directly to ACFOAM® roof insulations. This product should be used only in strict accordance with Atlas recommended uses and application instructions.

LIMITATION OF LIABILITY
Other than the aforementioned representations and descriptions, Atlas Roofing Corporation (hereafter, “Seller”) makes no other representations or warranties as to the insulation sold herein. The Seller disclaims all other warranties, express or implied, including the warranty of merchantability and the warranty of fitness for a particular purpose. Seller does, however, have a limited warranty as to the L TTR-value of the insulation, the terms of which are available upon request from the Seller. The Seller shall not be liable for any incidental or consequential damages including the cost of installation, removal, repair or replacement of this product. The Buyer's remedies shall be limited exclusively to, at Seller's option, the repayment of the purchase price or resupply of product manufactured by Atlas in a quantity equal to that of the nonconforming product. Atlas distributors, agents, salespersons or other independent representatives have no authority to waive or alter the above limitation of liability and remedies.

20-YEAR LIMITED WARRANTY
In response to valid concerns of building designers regarding thermal efficiency of roof assemblies and the long-term insulating value of roof insulation, Atlas offers a 20-year, limited thermal warranty. The “ACFOAM® Limited Warranty” places Atlas ACFOAM® products above all others and supports the building owner, designer and contractor by backing up thermal performance. This warranty is available to the building owner at the time the building is completed and is transferable to any subsequent owner for the duration of the 20-year period.